EVISA Print | Glossary on | Contact EVISA | Sitemap | Home   
 Advanced search
The establishment of EVISA is funded by the EU through the Fifth Framework Programme (G7RT- CT- 2002- 05112).

Supporters of EVISA includes:

Report Finds Mercury Contamination Permeates Wildlife Systems


The National Wildlife Federation's Northeast Division and the Biodiversity Research Institute have issued a report that indicated mercury is affecting more species of wildlife than originally thought. The study finds that tissue contamination has moved up the food chain beyond fish, and at levels high enough to threaten reproduction, compromise their immune systems, and impair their behavior, which endangers their offspring and makes them easier targets for predators.

The report, "Poisoning Wildlife: The Reality of Mercury Pollution", is a compilation of over 65 published studies finding elevated levels of mercury in a wide range of wildlife species including:

  • Freshwater Fish: Brook Trout, Walleye, Yellow Perch, Rainbow Trout, Northern Perch, Largemouth Bass
  • Birds in Aquatic Habitats: Bald Eagle, Great Egret, Wood Stork, Northern Shoveler, Common Loon, Red-winged Blackbird, White Ibis, Common Tern, Belted Kingfisher
  • Birds in Forest Habitats: Wood Thrush, Red-eyed Vireo, Louisiana Waterthrush, Bicknell’s Thrush, Carolina Wren, Prothonotary Warbler
  • Mammals: Florida Panther, Indiana Bat, Mink, River Otter, Raccoon
  • Reptiles, Amphibians, Invertebrates: Two-lined Salamander, Snapping Turtle, Crayfish, American Alligator, Bullfrog
  • Marine Life: Tiger Shark, Sperm Whale, Striped Bass, Loggerhead Sea Turtle, Narwhal, Polar Bear, Beluga Whale, Ringed Seal
“From songbirds to alligators, turtles to bats, eagles to otters, mercury is accumulating in nearly every corner of the food chain,” says Catherine Bowes, Northeast Program Manager for the National Wildlife Federation and principal author of the report. “This report paints a compelling picture of mercury contamination in the U.S., and many more species are at risk than we previously thought. Fish, long thought to be the key species affected by mercury, are just the tip of the iceberg.”

Initially, the contamination was thought to be confined to fish because mercury emitted into the air from coal-fired power plants, municipal incinerators and other sources collects in lakes and ponds, where it is transformed into a more toxic form, methylmercury. From there, it is consumed by aquatic insects and fish. The accumulation of mercury in fish has been well-understood for years, leading 46 states in the U.S. to issue consumption advisories warning people to limit or avoid eating certain species of fish. However, scientists have recently discovered that mercury accumulates in forest soils, indicating that wildlife that live and feed outside aquatic habitats are also at risk of exposure to mercury.

 “Scientific understanding of the extent of mercury contamination in wildlife has expanded significantly in recent years,” says Dr. David Evers of the Biodiversity Research Institute, wildlife toxicologist and leading researcher in this field. “We are finding mercury accumulation in far more species, and at much higher levels, than we previously thought was occurring. This poses a very real threat to the health of many wildlife populations, some of which are highly endangered.” Unlike humans, who have been warned about the dangers of mercury in fish, "animals do not have the luxury of choosing a food source that has lower mercury levels," the report said.

Several states have already taken action to reduce mercury pollution from major sources like waste incinerators, chlorine manufacturers, power plants, and consumer products, and the results are very promising. In places where mercury emissions have been cut, such as Florida, Wisconsin, New Hampshire, and Massachusetts, mercury levels in fish and wildlife have been reduced in a matter of years, not decades, as scientists have previously thought.

“Now that we have hard evidence that mercury is affecting more species than originally thought, anything short of phasing out this toxic metal is inadequate,” says Bowes. “The discovery of mercury in so many different species is a wake-up call. We need to ensure that all is being done to help wildlife cope with the stresses of a changing climate. Eliminating known threats like mercury is a critical place to start.”

 The original report:

 Larry Schweiger, Felice Stadler, Catherine Bowes, Poisoning Wildlife: The Reality of Mercury pollution, Report, National Wildlife Federation, 2006. pp. 24.

Related Studies

In order to empower the reader to get a complete picture, EVISA is summarizing the existing literature on the exposure of wilflife to mercury in North America here:

David C. Evers, Thomas A. Clair, Mercury in Northeastern North America: A synthesis of Existing Databases, Ecotox., 14/1-2 (2005) 7-14. DOI: 10.1007/s10646-004-6255-0

K.M. Harding, J.A. Gowland, P.J. Dillon, Mercury concentration in black flies Simulium spp. (Diptera, Simuliidae) from soft-water streams in Ontario, Canada, Environ. Pollut., 143/3 (2006) 529-535. DOI:10.1016/j.envpol.2005.11.040

 C.M. Pennuto, O.P. Lane, D.C. Evers, R.J. Taylor, J. Loukmas, Mercury in the northern crayfish, Orconectes virilis (Hagen), in New England, Ecotox., 14 (2005) 149-162. DOI: 10.1007/s10646-004-6266-x

 C.A. Hui, D. Rudnick, E. Williams, Mercury burdens in Chinese mitten crabs (Eriocheir sinensis) in three tributaries of southern San Francisco Bay, California, USA, Environ. Pollut., 133/3 (2005) 481-487. DOI: 10.1016/j.envpol.2004.06.019

 C.H. Jagoe, B. Arnold-Hill, G.M. Yanochko, P.V. Winger, I.L. Brisbin, Mercury in alligators (Alligator mississippiensis) in the southeastern United States, Sci. Total Environ., 213 (1998) 255-262. DOI: 10.1016/S0048-9697(98)00098-9

 Bernine Khan,  Berrin Tansel, Mercury Bioconcentration Factors in American Alligators (Alligator mississipiensis) in the Florida Everglades, Ecotoxicol. Environ. Safety, 47 (2000) 54-58. DOI: 10.1006/eesa.2000.1923

W.J. Golet, T.A. Haines, Snapping Turtles (Chelydra serpentina) As Monitors for Mercury Contamination of Aquatic Environments, Environ. Monit. Assess., 71 (2001) 211-220. DOI: 10.1023/a:1011802117198

 Rusty D. Day, Steven J. Christopher, Paul R. Becker, David W. Whitake, Monitoring Mercury in the Loggerhead Sea Turtle, Caretta caretta, Environ. Sci. Technol., 39/2 (2005) 437-446. DOI: 10.1021/es049628q

 M.S. Bank, C.S. Loftin, R.E. Jung, Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States, Ecotox., 14 (2005) 181-191. doi: 10.1007/s10646-004-6268-8

 C.A. Ugarte, K.G. Rice, M.A. Donnelly, Variation of total mercury concentrations in pig frogs (Rana grylio) across the Florida Everglades, USA, Sci. Total Environ., 345/1-3 (2005) 51-59. DOI: 10.1016/j.scitotenv.2004.10.015

 J.M. Unrine, C.H. Jagoe, A.C. Brinton, H.A. Brant, N.T. Garvin, Dietary mercury exposure and bioaccumulation in amphibian larvae inhabiting Carolina bay wetlands, Environ. Pollut., 135/2 (2005) 245-253. DOI: 10.1016/j.envpol.2004.11.003

 M.S. Bank, J. Crocker, B. Connery, A. Amirbahman, Mercury bioaccumulation in green frog and bullfrog tadpoles from Acadia National Park, Maine, USA, Environ. Toxicol. Chem.,  26/1 (2006) 118-125. DOI: 10.1897/07-035r.1

Freshwater Fish

 R.A. Mathers, P.H. Johansen, The effect of feeding ecology on mercury accumulation in walleye (Stizostedion vitreum) and pike (Esox lucius) in lake Simcoe, Can. J. Zool., 63 (1985) 2006-2012. DOI: 10.1139/z85-295

 G. Cabana, A. Tremblay, J. Kalff, J.B. Rasmussen, Pelagic food chain structure in Ontario lakes: a determinant of mercury levels in lake trout (Salvelinus namaycush), Can. J. Fish Aquat. Sci., 51 (1994) 381-389. DOI: 10.1139/f94-039

 P.R. Gorski, R.C. Lathrop, S.D. Hill, R.T. Herrin, Temporal mercury dynamics and diet composition in the mimic shiner, Trans. Am. Fish Soc., 128 (1999) 701-712. DOI: 10.1577/1548-8659(1999)128<0701:TMDADC>2.0.CO;2

 J. Rose, M.S. Hutcheson, C.R. West, O. Pancorbo, K. Hulme, A. Copperman, G. DeCesare, R. Isaac, A. Srepetis, Fish mercury distribution in Massachussetts, USA lakes, Environ. Toxicol. Chem., 18 (1999) 1370-1379. DOI: 10.1897/1551-5028(1999)018<1370:FMDIMU>2.3.CO;2
T.A. Johnston, R.A. Bodaly, M.A. Latif, R.J.P. Fudge, N.E. Strange, Intra-and interpolation variability in maternal transfer of mercury to eggs of walleye (Stizostedium vitreum), Aquat. Toxicol., 52 (2001) 73-85. DOI: 10.1016/s0166-445x(00)00129-6

 Spencer A. Peterson, Alan T. Herlihy, Robert M. Hughes, Kathryn L. Motter, James M. Robbins, Level and extend of mercury contamination on Oregon, USA, lotic fish, Environ. Toxicol. Chem., 21/10 (2002) 2157-2164. DOI: 10.1897/1551-5028(2002)021<2157:LAEOMC>2.0.CO;2

J.V. Cizdziel, T.A. Hinners, C.L. Cross, J.E. Pollard, Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA, J. Environ. Monit., 5/5 (2003) 802-807. DOI: 10.1039/b307641p

 Alan H. Stern, Robert J.M. Hudson, Christopher W. Shade, Shigeo Ekino, Tadashi Ninomiya, Mari Susa, H.H. Harris, I.J. Pickering, Graham N. George, More on Mercury Content in Fish, Science, 301 (2004) 763-766. DOI: 10.1126/science.303.5659.763b.

 W.L. Lockhart, G.A. Stern, G. Low, M. Hendzel, G. Boila, P. Roach, M.S. Evans, B.N. Billeck, J. DeLaronde, S. Friesen, K. Kidd, S. Atkins, D.C.G. Muir, M. Stoddart, G. Stephens, S. Stephenson, S. Harbicht, N. Snowshoe, B. Grey, S. Thompson, N. DeGraff, A history of total mercury in edible muscle of fish from lakes in northern Canada, Sci. Total Environ., 351-352 (2005) 427-463. DOI: 10.1016/j.scitotenv.2004.11.027

 M.S. Evans, W.L. Lockhart, L. Doetzel, G. Low, D. Muir, K. Kidd, G. Stephens, J. Delaronde, Elevated mercury concentrations in fish in lakes in the Mackenzie River Basin: The role of physical, chemical, and biological factors,  Sci. Total Environ., 351-352 (2005) 479-500. DOI: 10.1016/j.scitotenv.2004.12.086

 N.C. Kamman, N.M. Burgess, C.T. Driscoll, H.A. Simonin, W. Goodale, J. Linehan, R. Estabrook, M. Hutcheson, A. Major, A.M. Scheuhammer, D.A. Scruton, Mercury in freshwater fish of northeast North  - a geographic perspective based on fish tissue monitoring data bases, Ecotox., 14 (2005) 163-180. DOI: 10.1007/s10646-004-6267-9

 Edenise Garcia, Richard Carignan, Mercury concentrations in fish from forest harvesting and fire-impacted Canadian boreal lakes compared using stable isotopes of nitrogen, Environ. Toxicol. Chem., 24/3 (2005) 685-693. DOI: 10.1897/04-065R.1

Marine fish

G.M. Boush, J.R. Thieleke, Mercury content in sharks, Bull. Environ. Contam. Toxicol., 30 (1983) 284-290. DOI: 10.1007/BF01610134

 J. Ruelas-Inzunza, F. Páez-Osuna, Mercury in Fish and Shark Tissues from Two Coastal Lagoons in the Gulf of California, Mexico, Bull. Environ. Contam. Toxicol., 74/2 (2005) 294-300. DOI: 10.1007/s00128-004-0583-x

 B.M. Braune, D.E. Gaskin, Mercury levels in Bonaparte's gull (Larus philadelphia) during autumn molt in the Quoddy region, New Brunswick, Canada, Arch. Environ. Contam. Toxicol., 16 (1987) 539-549. DOI: 10.1007/BF01055810

 M.D. Koster, D.P. Ryckman, D.V.C. Weseloh, J. Struger, Mercury levels in great lakes herring gull (Larus argentatus) eggs, 1972-92, Environ. Pollut., 93 (1996) 261-270. DOI: 10.1016/s0269-7491(96)00043-7

 J.C. Gariboldi, C.H. Jagoe, A.L. Bryan Jr, Dietary Exposure to Mercury in Nestling Wood Storks (Mycteria americana) in Georgia, Arch. Environ. Contam. Toxicol., 34 (1998) 398-405. DOI: 10.1007/s002449900336

 D.C. Evers, J.D. Kaplan, M.W. Meyer, P.S. Reaman, W.E. Braselton, A. Major, N. Burgess, A.M. Scheuhammer, Geographic trend in mercury measured in common loon feathers and blood, Environ. Toxicol. Chem., 17/2 (1998) 173-183. DOI: 10.1897/1551-5028(1998)017<0173:GTIMMI>2.3.CO;2

 M.W. Meyer, D.C. Evers, J.J. Hartigan, P.S. Rasmussen, Patterns of common loon (Gavia immer) mercury exposure, reproduction, and survival in Wisconsin, USA, Environ. Toxicol. Chem., 17 (1998) 184-190. DOI: 10.1002/etc.5620170207

 Anton M. Scheuhammer, Carolyn M. Atchison, Allan H. K. Wong, David C. Evers, Mercury exposure in breeding common loons (Gava Immer) in central Ontario, Canada, Environ. Toxicol. Chem., 17/2 (1998) 191-196. DOI: 10.1897/1551-5028(1998)017<0191:MEIBCL>2.3.CO;2

 Marti Wolfe, Donald Norman, Effects of waterborne mercury on terrestrial wildlife at clear lake: evaluation and testing of a predictive model, Environ. Toxicol. Chem., 17/2 (1998) 214-227.  DOI: 10.1897/1551-5028(1998)017<0214:EOWMOT>2.3.CO;2

 P.C. Frederick, M.G. Spalding, M.S. Sepulveda, G.E. Williams Jr., L. Nico, R. Robbins, Exposure of Great Egret nestlings to mercury through diet in the Everglades of Florida, Environ. Toxicol. Chem., 18 (1999) 1940-1947. DOI: 10.1002/etc.5620180912

 Joan C. Gariboldi, A. Lawrence Bryan Jr., Charles H. Jagoe, Annual and regional variation in mercury concentrations in wood stork nestlings, Environ. Toxicol. Chem., 20/7 (2001) 1551-1556.  DOI: 10.1897/1551-5028(2001)020<1551:AARVIM>2.0.CO;2

 K.D. Reynolds, T.R. Rainwater, E.J. Scollon, S.S. Sathe, B.M. Adair, K.R. Dixon, G.P. Cobb, S.T. McMurry, Accumulation of DDT and mercury in Prothonotary Warblers (Protonotaria citrea) foraging in a heterogeneously contaminated environment, Environ. Toxicol. Chem., 20 (2001) 2903-2909. DOI: 10.1002/etc.5620201234

 Peter C. Frederick, Marilyn G. Spalding, Robert Dusek, Wading birds as bioinicators of mercury contamination in Florida, USA: Annual and Geographic variation, Environ. Toxicol. Chem., 21/1 (2002) 163-167.  DOI: 10.1897/1551-5028(2002)021<0163:WBABOM>2.0.CO;2

 Blakely M. Adair, K.D. Reynolds, S.T. McMurry, G.P. Cobb, Mercury occurrence in prothonotary warblers (Protonotaria citrea) inhabiting a National Priorities List site and reference areas in southern Alabama, Arch. Environ. Contam. Toxicol., 44 (2003) 255-271. DOI: 10.1007/s00244-002-2027-0

 S.L. Gerstenberger, Mercury concentrations in migratory waterfowl harvested from Southern Nevada Wildlife Management Areas, USA, Environ. Toxicol., 19 (2004) 35-44. DOI: 10.1002/tox.10149
 Gary H. Heinz, David J. Hoffman, Mercury accumulation and loss in Mallard eggs, Environ. Toxicol. Chem., 23/1 (2004) 222-224. DOI: 10.1897/03-111

 Peter C. Frederick, Becky Hylton, Julie A. Heath, Marilyn G. Spalding, A historical record of mercury contamination in southern Florida (USA) as inferred from avian feather tissue, Environ. Toxicol. Chem., 23/6 (2004) 1474-1478. DOI: 10.1897/03-403

 D.C. Evers, N.M. Burgess, L. Champoux, B. Hoskins, A. Major, W.M. Goodale,
R.J. Taylor, R. Poppenga, T. Daigle, Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America, Ecotoxicology, 14 (2005) 193-221. DOI: 10.1007/s10646-004-6269-7

 C.C. Rimmer, K.P. McFarland, D.C. Evers, E.K. Miller, Y. Aubry, D. Busby, R.J. Taylor, Mercury levels in Bicknell's thrush and other insectivorous passerine birds in montane forests of the northeastern United States and Canada, Ecotoxicology, 14 (2005) 223-240. DOI: 10.1007/s10646-004-6270-1

Neil M. Burgess, David C. Evers,  Joseph D. Kaplan, Mercury and other Contaminants in Common Loons Breeding in Atlantic Canada, Ecotoxicology, 14/1-2 (2005) 241-252. DOI: 10.1007/s10646-004-6271-0

 S.E. Schwarzbach, M. Stephenson, T. Ruhlen, S. Abbott, G.W. Page, D. Adams, Elevated mercury concentrations in failed eggs of Snowy Plovers at Point Reyes National Seashore, Mar. Pollut. Bull., 50/11 (2005) 1444-1447. DOI:10.1016/j.marpolbul.2005.09.003

 D.C. Evers, M. Duron, Developing an exposure profile for mercury in breeding birds of New York and Pennsylvania, Report, BioDiversity Res. Inst., Gorham, ME, BRI 2006-11, 2006.


 C.D. Wren, A review of metal accumulation and toxicity in wild mammals. I. Mercury, Environ. Res. (U.S.A), 40 (1986) 210-244. DOI: 10.1016/S0013-9351(86)80098-6

 D. Yates, D.C. Evers, Assessment of bats for mercury contamination on the North Fork of the Holston River, VA, Report, BioDiversity Res. Inst., Gorham, ME, BRI 2006-9, 2006.

 R.D.P. Eaton, J.P. Farant, The polar bear as a biological indicator of the environmental mercury burden, Arctic, 35/3 (1982) 422-425.

 A. Renzoni, R.J. Nordstrom, Mercury in the hairs of polar bears Ursus maritimus, Polar Record, 26 (1990) 326-328. DOI: 10.1017/S003224740001192X

 L.M. Vucetich, J.A. Vucetich, L.B. Cleckner, P.R. Gorski, R.O. Peterson, Mercury concentrations in Deer Mouse (Peromyscus maniculatus) Tissue from Isle Royale National Park, Environ. Pollut., 114 (2001) 113-118. DOI: 10.1016/s0269-7491(00)00199-8

Sea lion
 K.B. Beckmen, L.K. Duffy, X. Zhang, K.W. Pitcher, Mercury concentrations in the fur of Steller sea lions and northern fur seals from Alaska, Mar. Pollut. Bull., 44/10 (2002) 1130-1135. DOI: 10.1016/s0025-326x(02)00167-4

Mink and Otter
 C.D. Wren, Probable case of mercury poisoning in a wild otter (Lutra canadensis) in northwestern Ontario, Canadian Field-Naturalist, 99 (1985) 112-114.

 C.D. Wren, P.M. Stokes, K.L. Fisher, Mercury levels in Ontario mink and otter relative to food levels and environmental acidification, Can. J. Zool., 64 (1986) 2854-2859. DOI: 10.1139/z86-411

 R.S. Halbrook, J.H. Jenkins, P.B. Bush, N.D. Seabolt, Sublethal concentrations of mercury in river otters - monitoring environmental contamination, Arch. Environ. Contam. Toxicol., 27 (1994) 306-310. DOI: 10.1007/BF00213164

 R.D. Evans, E.M. Addison, J.-Y. Villeneuve, K.S. Macdonald, D.G. Joachim, An examination of spatial variation in mercury concentrations in otter (Lutra canadensis) in south-central Ontario, Sci. Total Environ., 213 (1998) 239-245. DOI: 10.1016/s0048-9697(98)00096-5

 Gregory Mierle, Edward M. Addison, Katherine S. MacDonald, Damien G. Joachim, Mercury levels in tissues of otters from Ontario, Canada: Variation with age, sex, and location, Environ. Toxicol. Chem., 19/12 (2000) 3044-3051. DOI: 10.1897/1551-5028(2000)019<3044:MLITOO>2.0.CO;2

 Merav Ben-David, Lawrence K. Duffy, Gail M. Blundell, R. Terry Bowyer, Natural exposure of coastal river otters to mercury: relation to age, diet, and survival, Environ. Toxicol. Chem., 20/9 (2001) 1986-1992. DOI: 10.1897/1551-5028(2001)020<1986:NEOCRO>2.0.CO;2

 D. Yates, D.T. Mayack, K. Munney, D.C. Evers, A. Major, T. Knaur, R.J. Taylor, Mercury Levels in Mink (Mustela vison) and River Otter (Lontra canadensis) from Northeastern North America, Ecotoxicology, 14 (2005) 263-274. DOI: 10.1007/s10646-004-6273-y

 C.G. Lord, K.F. Gaines, C.S. Boring, I.L. Brisbin Jr, M. Gochfeld,  J. Burger, Raccoon (Procyon lotor) as a bioindicator of mercury contamination at the U.S. Department of Energy's Savannah River Site, Arch. Environ. Contam. Toxicol., 43 (2002) 356-363. DOI: 10.1016/s0048-9697(98)00096-5

 D.B. Porcella, E.J. Zillioux, T.M.  Grieb, J.R. Newman, G.B. West, Retrospective study of mercury in raccoons (Procyon lotor) in south Florida, Ecotoxicology, 13 (2004) 207-221. DOI: 10.1023/B:ECTX.0000023566.05061.3c

 Mace G. Barron, Stephanie E. Duvall, Kyle J. Barron, Retrospective and Current Risks of Mercury to Panthers in the Florida Everglades, Ecotoxicology, 13/3 (2004) 223-229. DOI: 10.1023/B:ECTX.0000023567.42698.38

 L.K. Duffy, R.S. Duffy, G. Finstad, C. Gerlach, A note on mercury levels in the hair of Alaskan reindeer, Sci. Total Environ., 339/1-3 (2005) 273-276. DOI: 10.1016/j.scitotenv.2004.12.003

 Liguang Sun, Xuebin Yin, Xiaodong Liu, Renbin Zhu, Zhouqing Xie, Yuhong Wang, A 2000-year record of mercury and ancient civilizations in seal hairs from King George Island, West Antarctica, Sci. Total Environ., 368/1 (2006) 236-247. DOI: 10.1016/j.scitotenv.2005.09.092

 R. Wagemann, N.B. Snow, A. Lutz, D.P. Scott, Heavy metals in tissues and organs of the narwhal (Monodon monoceros), Can. J. Fish Aquat. Sci., 40/Su.2 (1983) 206-214. DOI: 10.1139/f83-326

 Peter M. Outridge, Rudolph Wagemann, Roger McNeely, Teeth as biomonitors of soft tissue mercury concentrations in Beluga, Delphinapterus Leucas, Environ. Toxicol. Chem., 19/6 (2000) 1517-1522. DOI: 10.1897/1551-5028(2000)019<1517:TABOST>2.3.CO;2

 Peter M. Outridge, K.A. Hobson, R. McNeely, A. Dyke, A comparison of modern and preindustrial levels of mercury in the teeth of beluga in the Mackenzie Delta, Northwest Territories, and walrus at Igloolik, Nunavut, Canada, Arctic, 55/2 (2002) 123-132. DOI: 10.14430/arctic696

 R. Wagemann, H. Kozlowska, Mercury distribution in the skin of beluga (Delphinapterus leucas) and narwhal (Monodon monoceros) from the Canadian Arctic and mercury burdens and excretion by moulting, Sci. Total Environ., 351-352 (2005) 333-343. DOI: 10.1016/j.scitotenv.2004.06.028

 W.L. Lockhart, G.A. Stern, R. Wagemann, R.V. Hunt, D.A. Metner, J. DeLaronde, B. Dunn, R.E.A. Stewart, C.K. Hyatt, L. Harwood, K. Mount, Concentrations of mercury in tissues of beluga whales (Delphinapterus leucas) from several communities in the Canadian Arctic from 1981 to 2002, Sci. Total Environ., 351-352 (2005) 391-412. DOI: 10.1016/j.scitotenv.2005.01.050

Related Information

BioDiversity Research Institute: The Mercury Connection
BioDiversity Research Institute: Center for Mercury Studies

Related EVISA News

April 27, 2004: FDA/EPA recommends pregnant women to restrict their fish consumption because of methylmercury content
April 27, 2004: New kind of mercury found in fish
November 23, 2004: Is the methylmercury paradox real ?
January 12, 2005: Number of fish meals is a good predictor for the mercury found in hair of environmental journalists
March 20, 2005: New results on the distribution of mercury in the USA is fueling the discussion on the necessity of the reduction of its emission
April 3, 2005: Dissension on the best way to fight mercury pollution
August 29, 2005: Is methyl mercury limiting the delight of seafood ? - To answer this question is a challenge for elemental speciation analysis
September 9, 2005: Regulating Mercury Emissions from Power Plants: Will It Protect Our Health?
February 9, 2006: Study show high levels of mercury in women related to fish consumption
February, 17, 2006: Study shows link between clear lakes and methylmercury contamination in fish
May 3, 2006: Texas Study Relates Autism to Environmental Mercury
July 16, 2006: Sulfur fuels the methylation of mercury
August 16, 2006: Mercury pollution threatens health worldwide, scientists say

last time modified: June 22, 2020


Imprint     Disclaimer

© 2003 - 2010 by European Virtual Institute for Speciation Analysis ( EVISA )