EVISA Print | Glossary on | Contact EVISA | Sitemap | Home   
 Advanced search
The establishment of EVISA is funded by the EU through the Fifth Framework Programme (G7RT- CT- 2002- 05112).

Supporters of EVISA includes:

New study shows: Coastal water, not sediment, predicts methylmercury bioaccumulation in the marine food web


Mercury released into the air through industrial pollution is turned into its most toxic form, methylmercury (MeHg), by microbial activity in coastal sediment, streams and oceans. Once transformed, MeHg bioaccumulates and bioamagnifies in marine food webs. Lower trophic level fauna are important conduits of MeHg from sediment and water to estuarine and coastal fish harvested for human consumption. However, the sources and pathways of MeHg to these coastal fisheries are poorly known.

The new study:
The Dartmouth-UConn team studied 10 estuaries from New Jersey's Hackensack Meadowlands to the Gulf of Maine with different levels of anthropogenic mercury input. They collected water, sediment and biotic samples such as worms, mussels and fish and analyzed them for inorganic mercury and MeHg.

Dartmouth Professor Celia Y. Chen
(Photo Credit: Dartmouth College)

The researchers found that methylmercury concentrations in the water, not the sediment, predicted methylmercury concentrations in killifish and Atlantic silversides, and that concentrations were higher in these forage fish than in bottom-feeding worms. Concentrations in sediment only predicted contamination levels in the worms.

"Our paper shows methylmercury's impact on food webs is not simply based on sediment contamination but is far more complex and appears based on the flux of methylmercury from sediments to the water column or even methylmercury transported via water from other parts of the watershed," says Professor Celia Chen, principal investigator and a project leader of Dartmouth's Toxic Metals Superfund Research Program.

The findings suggest that mercury assessment and remediation, which currently focus on sediment contamination, should instead focus on measuring methylmercury in water column particles, which may be contaminated by the local pollution source or reflect sources outside of the specific estuary. "Our results across a broad range of sites demonstrate that the pathways of methylmercury to lower level estuarine organisms are distinctly different between organisms in the sediment and forage fish," Chen says. "Thus, even in systems with contaminated sediments, transfer of methylmercury into estuarine food webs may be driven more by the amount of methylmercury available in the water column."

Source: Adapted from Dartmouth College

The cited study:

Celia Y. Chen, Mark E. Borsuk, Deenie M. Bugge, Terill Hollweg, Prentiss H. Balcom, Darren M. Ward, Jason Williams, Robert P. Mason, Benthic and Pelagic Pathways of Methylmercury Bioaccumulation in Estuarine Food Webs of the Northeast United States; PLoS ONE, 9/2 (2014) e89305. doi:10.1371/journal.pone.0089305

Related studies (newest first):

  A.T. Schartup, R.P. Mason, P.H. Balcom, T.A. Hollweg, C.Y. Chen, Methylmercury production in estuarine sediments: role of organic matter;. Environ. Sci. Technol., 47 (2013) 695–700. doi: 10.1021/es302566w

C.Y. Chen, C.T. Driscoll, K.F. Lambert, R.P. Mason, L.R. Rardin, N. Serrell, E.M. Sunderland, Marine mercury fate: From sources to seafood consumers; Environ. Res., 119 (2012) 1–2. doi: 10.1016/j.envres.2012.10.001

  D.L. Taylor, J.C. Linehan, D.W. Murray, W.L. Prell, Indicators of sediment and biotic mercury contamination in a southern New England estuary; Mar. Pollut. Bull., 64 (2012) 807–819. doi: 10.1016/j.marpolbul.2012.01.013

E.M. Sunderland, A. Amirbahman, N.M. Burgess, J.  Dalziel, G. Harding, S.H. Jones, E. Kamai, M.E. Karagas, X. Shi, C.Y. Chen, Mercury sources and fate in the Gulf of Maine; Environ. Res., 119 (2012) 27–41. doi: 10.1016/j.envres.2012.03.011

  J.A. Davis, R.E. Looker, D. Yee, M. Marvin-Di Pasquale, J.L. Grenier, C.M. Austin, L.J. McKee, B.K. Greenfield, R. Brodberg, J.D. Blum, Reducing methylmercury accumulation in the food webs of San Francisco Bay and its local watersheds; Environ. Res., 119 (2012) 3–26. doi: 10.1016/j.envres.2012.10.002

  K.R. Rolfhus, B.D.  Hall, B.A. Monson, M.J. Paterson, J.D. Jeremiason,  Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great Lakes region; Ecotoxicol., 20 (2012) 1520–1529. doi: 10.1007/s10646-011-0733-y

R.P. Mason, A.L. Choi, W.F. Fitzgerald, C.R. Hammerschmidt, C.H. Lamborg , A.L. Soerensen, E.M. Sunderland, Mercury biogeochemical cycling in the ocean and policy implications; Environ. Res., 119 (2012) 101–117. doi: 10.1016/j.envres.2012.03.013

  B. Fry, M.M. Chumchal, Mercury bioaccumulation in estuarine food webs; Ecol. Appl., 22 (2012) 606–623. doi: 10.1890/11-0921.1

  D. Yee, L.J. McKee, J.J. Oram, A regional mass balance of methylmercury in San Francisco Bay, California, USA; Environ. Toxicol. Chem., 30 (2011) 88–96. doi: 10.1002/etc.366

G.E. Gehrke, J.D. Blum, D.G. Slotton, B.K. Greenfield, Mercury isotopes link mercury in San Francisco Bay forage fish to surface sediments; Environ. Sci. Technol., 45 (2011) 1264–1270. doi: 10.1021/es103053y

E.M. Sunderland, J. Dalziel, A. Heyes, B.A. Branfireun, D.P. Krabbenhoft, F.A.P.C. Gobs, Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000; Environ. Sci.  & Technol., 44 (2010) 1698–1704. doi: 10.1021/es9032524

T.A. Hollweg, C.C. Gilmour, R.P. Mason, Mercury and methylmercury cycling in sediments of the mid-Atlantic continental shelf and slope; Limnol. Oceanogr., 55 (2010) 2703–2722.  DOI: 10.4319/lo.2010.55.6.2703

J.J. Williams,  J. Dutton, C.Y. Chen, N.S. Fisher, Metal (As, Cd, Hg, and CH3Hg) bioaccumulation from water and food by the benthic amphipod Leptocheirus plumulosus; Environ. Toxicol. Chem., 29 (2010) 1755–1761. doi: 10.1002/etc.207

W.F. Fitzgerald, R.P. Mason, A Synthesis and Assessment of Modern and Historic Heavy Metal Contamination in New York/New Jersey Harbor Estuary with Emphasis on Hg and Cd Hudson; Hudson River Foundation Grant No.003/05A, June 2010. available from: Hudson River Foundation

L.C. Chasar, B.C.  Scudder, A.R. Stewart, A.H. Bell, G.R. Aiken,  Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation; Environ. Sci. Technol., 43 (2009) 2733–2739. doi: 10.1021/es8027567

T.A. Hollweg, C.C. Gilmour, R.P. Mason, Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin; Mar. Chem., 114 (2009) 86–101. doi: 10.1016/j.marchem.2009.04.004

C.Y. Chen, M. Dionne, B.M. Mayes, D.M. Ward, S. Sturup, B.P. Jackson, Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine; Environ. Sci. Technol., 43 (2009) 1804–1810. doi: 10.1021/es8017122

A.J. Beck, J.K. Cochran, S.A. Sanudo-Wilhelmy, Temporal trends of dissolved trace metals in Jamaica Bay, NY: Importance of wastewater input and submarine groundwater discharge in an urban estuary, Estuaries Coasts, 32/3 (2009) 535–550. doi: 10.1007/s12237-009-9140-5

B. Wyn, K.A. Kidd, N.M. Burgess, R.A. Curry, Mercury biomagnification in the food webs of acidic lakes in Kejimkujik National Park and National Historic Site, Nova Scotia; Can. J. Fish. Aquat. Sci., 66 (2009) 1532–1545. doi: 10.1139/f09-097

B. Liu, L.A. Schaider, R.P. Mason, M.S. Bank, N.N. Rabalais, P.W. Swarzenski, J.P. Shine, T. Hollweg, D.B. Senn, Disturbance impacts on mercury dynamics in northern Gulf of Mexico sediments;  J. Geophys. Res. Biogeosc., 114 (2009) G00C07: 1–12. doi: 10.1029/2008jg000752

E.-H. Kim, R.P. Mason, C.M. Bergeron, A modeling study on methylmercury bioaccumulation and its controlling factors; Ecol. Model., 218 (2008) 267–289. doi: 10.1016/j.ecolmodel.2008.07.008

A.R. Stewart, M.K. Saiki, J.S. Kuwabara, C.N. Alpers, M. Marvin-DiPasquale, D.P. Krabbenhoft, Influence of plankton mercury dynamics and trophic pathways on mercury concentrations of top predator fish of a mining-impacted reservoir; Can. J. Fish. Aquat. Sci., 65 (2008) 2351–2366. doi: 10.1139/f08-140 

C.R. Hammerschmidt, W.F. Fitzgerald, P.H. Balcom, P.T. Visscher, Organic matter and sulfide inhibit methylmercury production in sediments of New York/New Jersey Harbor. Mar. Chem., 109 (2008) 165–182. doi: 10.1016/j.marchem.2008.01.007

P.R. Gorski, D.E.  Armstrong, J.P.  Hurley, D.P.  Krabbenhoft,  Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga; Environ. Pollut., 154 (2008) 116–123. doi: 10.1016/j.envpol.2007.12.004

J.P. Coelho, A.T. Reis, S. Ventura, M.E. Pereira, A.C. Duarte, M.A. Pardal, Pattern and pathways for mercury lifespan bioaccumulation in Carcinus maenas; Mar. Pollut. Bull., 56 (2008) 1104–1110. doi: 10.1016/j.marpolbul.2008.03.020

W.F. Fitzgerald, C.H. Lamborg, C.R. Hammerschmidt, Marine biogeochemical cycling of mercury; Chem. Rev., 107 (2007) 641–662. doi: 10.1021/cr050353m

S.E. Bone, M.A. Charette, C.H. Lamborg, M.E. Gonneea, Has submarine groundwater discharge been overlooked as a source of mercury to coastal waters? Environ. Sci. Technol., 41 (2007) 3090–3095. doi: 10.1021/es0622453

P.C. Pickhardt, N.S. Fisher, Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies;  Environ. Sci. Technol., 41 (2007) 125–131. doi: 10.1021/es060966w

C.R. Hammerschmidt, W.F. Fitzgerald, Methylmercury cycling in sediments on the continental shelf of southern New England; Geochim. Cosmochim.  Acta,  70 (2006) 918–930. doi: 10.1016/j.gca.2005.10.020

P.C. Pickhardt, M. Stepanova, N.S. Fisher, Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus); Environ. Toxicol. Chem., 25 (2006) 2132–2142. doi: 10.1897/05-595r.1

R.P. Mason, E.-H. Kim, J. Cornwell, D. Heyes, An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment; Mar. Chem., 102 (2006) 96–110. doi: 10.1016/j.marchem.2005.09.021

A. Heyes, R.P. Mason, E.-H. Kim, E. Sunderland, Mercury methylation in estuaries: Insights from using measuring rates using stable mercury isotopes; Mar. Chem., 102 (2006) 134–147. doi: 10.1016/j.marchem.2005.09.018

U. Skyllberg, P.R. Bloom, J. Qian, C.-M. Lin, W.F. Bleam,  Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups; Environ. Sci. Technol., 40 (2006)  4174–4180. doi: 10.1021/es0600577

E.H. Kim, R.P. Mason, E.T. Porter, H.L. Soulen, The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate: A mesocosm study; Mar. Chem., 102 (2006) 300–315. doi: 10.1016/j.marchem.2006.05.006

C.R. Hammerschmidt, W.F. Fitzgerald, C.H. Lamborg, P.H. Balcom, P.T.  Visscher, Biogeochemistry of methylmercury in sediments of Long Island Sound; Mar. Chem., 90 (2004) 31–52. doi: 10.1016/j.marchem.2004.02.024

E.H. Kim, R.P. Mason, E.T. Porter, H.L. Soulen, The effect of resuspension on the fate of total mercury and methyl mercury in a shallow estuarine ecosystem: a mesocosm study; Mar. Chem., 86 (2004) 121–137. doi: 10.1016/j.marchem.2003.12.004

P.H. Balcom, W.F. Fitzgerald, G.M. Vandal, C.H. Lamborg, K.R. Rolfus, C.S. Lamger, C.R.  Hammerschmidt, Mercury sources and cycling in the Connecticut River and Long Island Sound; Mar. Chem., 90 (2004) 53–74. doi: 10.1016/j.marchem.2004.02.020

J.F. Pan, W.X. Wang, Uptake of Hg (II) and methylmercury by the green mussel Perna viridis under different organic carbon conditions;  Mar. Ecol. Progr. Series 276 (2004) 125–136. doi: 10.3354/meps276125

C.H. Conaway, S. Squire, R.P. Mason, A.R. Flegal, Mercury speciation in the San Francisco Bay estuary; Mar. Chem., 80 (2003) 199–225. doi: 10.1016/s0304-4203(02)00135-4

L.B. Cleckner, R. Back, P.R. Gorski, J.P. Hurley, S.M. Byler,  Seasonal and size-specific distribution of methylmercury in seston and zooplankton of two contrasting Great Lakes embayments; J. Great Lakes Res., 29 (2003) 134–144. doi: 10.1016/s0380-1330(03)70422-5 

J.B. Shanley, P.F. Schuster, M.M. Reddy, D.A. Roth, H.E. Taylor, G.R. Aiken, Mercury on the move during snowmelt in Vermont; Eos Trans AGU, 83 (2002) 45-48. doi: 10.1029/2002EO000031

M. Power, G.M. Klein, K. Guiguer, M.K.H. Kwan, Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources; J. Appl. Ecol., 39 (2002) 819–830. doi: 10.1046/j.1365-2664.2002.00758.x 

D. Hesterberg, J.W. Chou, K.J. Hutchison, D.E. Sayers, Bonding of Hg(II) to reduced organic sulfur in humic acid as affected by S/Hg ratio. Environ. Sci. Technol., 35 (2001) 2741–2745. doi: 10.1021/es001960o

A.L. Lawrence, R.P. Mason, Factors controlling the bioaccumulation of mercury and methylmercury by the estuarine amphipod Leptocheirus plumulosus; Environ. Pollut., 111 (2001) 217–231. doi: 10.1016/s0269-7491(00)00072-5

L.D. Guo, B.J. Hunt, P.H. Santschi, S.M. Ray, Effect of dissolved organic matter on the uptake of trace metals by American oysters; Environ. Sci. Technol., 35 (2001) 885–893. doi: 10.1021/es001758l

K.R. Rolfhus, W.F. Fitzgerald, The evasion and spatial/temporal distribution of mercury species in Long Island Sound, CT-NY; Geochim. Cosmochim. Acta, 65 (2001) 407–418. doi: 10.1016/s0016-7037(00)00519-6

R.P. Mason, N.M. Lawson, A.L. Lawrence, J.J. Leaner, J.G. Lee, G.R. Sheu, Mercury in the Chesapeake Bay; Mar. Chem., 65 (1999) 77–96. doi: 10.1016/s0304-4203(99)00012-2

J.K. King, F.M.  Saunders, R.F. Lee, R.A. Jahnke, Coupling mercury methylation rates to sulfate reduction rates in marine sediments; Environ. Toxicol. Chem., 18 (1999) 1362–1369. DOI: 10.1002/etc.5620180704

A.L. Lawrence, K.M. Mcaloon, R.P. Mason, L.M. Mayer, Intestinal solubilization of particle-associated organic and inorganic mercury as a measure of bioavailability to benthic invertebrates, Environ. Sci. Technol., 33 (1999) 1871–1876. doi: 10.1021/es981328j

J.M. Benoit, C.C. Gilmour, R.P. Mason, G.S. Riedel, G.F. Riedel, Behavior of mercury in the Patuxent River estuary; Biogeochem., 40 (1998) 249–265. doi: 10.1023/a:1005905700864

C.J. Watras, R.C. Back, S. Halvorsen, R.J.M. Hudson, K.A. Morrison, S.P. Wente, Bioaccumulation of mercury in pelagic freshwater food webs; Sci. Total Environ., 219 (1998) 183–208. doi: 10.1016/s0048-9697(98)00228-9

C. Gagnon, N.S. Fisher, Bioavailability of sediment-bound methyl and inorganic mercury to a marine bivalve; Environ.  Sci. Technol., 31 (1997) 993–998. doi: 10.1021/es960364k

B.D. Hall, R.A. Bodaly, R.J.P. Fudge, J.W.M. Rudd, D.M. Rosenberg, Food as the dominant pathway of methylmercury uptake by fish; Water Air Soil Pollut., 100 (1997) 13–24. DOI: 10.1023/A:1018071406537

R.P. Mason, J.R.  Reinfelder, F.M.M. Morel, Uptake, toxicity, and trophic transfer of mercury in a coastal diatom; Environ. Sci.  Technol., 30 (1996) 1835–1845. doi: 10.1021/es950373d

C.J. Watras, K.A. Morrison, N.S. Bloom, Chemical correlates of Hg and methyl-Hg in northern Wisconsin lake waters under ice-cover; Water Air Soil Pollut., 84 (1995) 253–267. doi: 10.1007/bf00475343

C.T. Driscoll, V. Blette, C. Yan, C.L. Schofield, R. Munson, J. Holsapple, The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water, Air, Soil Pollution,  80 (1995)  499–508. doi: 10.1007/bf01189700

R.P. Mason, J.R. Reinfelder, F.M.M. Morel, Bioaccumulation of mercury and methylmercury; Water, Air, Soil Pollut., 80 (1995) 915–921. doi: 10.1007/bf01189744

T.M. Grieb, C.T. Driscoll, S.P. Gloss, C.L. Schofield, G.L. Bowie,  D.B. Porcella, Factors affecting mercury accumulation in fish in the Upper Michigan Peninsula; Environ. Toxicol. Chem., 9 (1990) 919–930. doi: 10.1897/1552-8618(1990)9[919:famaif]2.0.co;2 

P. Weis, Effects of environmental factos on release of mercury from Berry’s Creek (New Jersey) sediments and its uptake by killifish Fundulus heteroclitus, Environ. Pollut. (Series A),  40 (1986) 303–315. doi: 10.1016/0143-1471(86)90064-4

G.C. Compeau, R. Bartha, Sulfate-reducing bacteria - Principal methylators of mercury in anoxic estuarine sediment; Appl. Environ.  Microbiol.; 50 (1985) 498–502. available from PMC 238440

Related EVISA Resources:

 EVISA Link Database: Environmental cycling of methylmercury
EVISA Link Database: Environmental cycling of inorganic mercury
 EVISA Link Database: Environmental pollution of methylmercury
EVISA Link Database: Environmental pollution of inorganic mercury
EVISA Link Database: Toxicity of mercury
EVISA Brief Summary: GC-ICP-MS: A very sensitive hyphenated system for speciation analysis
EVISA Brief Summary: Atomic Fluorescence Spectrometry as a Detection System for Speciation Analysis

 Related EVISA News

November 20, 2013: EPA Study: Mercury Levels in Women of Childbearing Age Drop 34 Percent
January 14, 2013: Mercury Levels in Humans and Fish Around the World Regularly Exceed Health Advisory Levels

December 24, 2012: Mercury in food – EFSA updates advice on risks for public health
December 9, 2012: Mercury in fish more dangerous than previously believed; Scientists urge for effective treaty ahead of UN talks
June 17, 2012: Factors Affecting Methylmercury Accumulation in the Food Chain

October 15, 2011: Mercury pollution in the Great Lakes region -- nearly forgotten, but not gone
August 16, 2010: Methylmercury: What have we learned from Minamata Bay?
June 28, 2010: New Study Examines Why Mercury is More Dangerous in Oceans
August 21, 2009: USGS Study Reveals Mercury Contamination in Fish Nationwide
June 17, 2009: 'Surprisingly High Levels' of Methylmercury Contamination found in Groundwater
May 5, 2009: Ocean mercury on the rise
February 11, 2009: Mercury in Fish is a Global Health Concern
October 30, 2008: Precautionary approach to methylmercury needed
March 11, 2007: Methylmercury contamination of fish warrants worldwide public warning
October 9, 2006: Linking atmospheric mercury to methylmercury in fish
September 23, 2006: Report Finds Mercury Contamination Permeates Wildlife Systems
August 16, 2006: Mercury pollution threatens health worldwide, scientists say
February 9, 2006: Study show high levels of mercury in women related to fish consumption
September 13, 2005: Regulating Mercury Emissions from Power Plants: Will It Protect Our Health?
August 29, 2005: Is methyl mercury limiting the delight of seafood ? - To answer this question is a challenge for elemental speciation analysis
April 3, 2005: Dissension on the best way to fight mercury pollution
March 20, 2005: New results on the distribution of mercury in the USA is fueling the discussion on the necessity of the reduction of its emission
January 12, 2005: Number of fish meals is a good predictor for the mercury found in hair of environmental journalists
April 27, 2004: FDA/EPA recommends pregnant women to restrict their fish consumption because of methylmercury content

last time modified: February 20, 2014

Imprint     Disclaimer

© 2003 - 2010 by European Virtual Institute for Speciation Analysis ( EVISA )